import pandas as pd
from qcs import AllocationSnapshot, Context
currency = "EUR"
positions = [
{"ticker": "EQUITYEUR68", "size": 10.0},
{"ticker": "EQUITYEUR70", "size": 200.0},
]
benchmark_snapshot = AllocationSnapshot(currency=currency, positions=positions)
snapshot = AllocationSnapshot(
currency=currency, positions=positions, benchmark=benchmark_snapshot
)
factors_all = ["<EQUITYEUR68>", "GBP", "CHF", "USD", "DKK", "KRW"]
assets = [
{
"code": "<EQUITYEUR68>",
"label": "Equity EUR n. 68",
"type": "EQT",
"currency": "EUR",
"alias1": "EQUITYEUR68",
"formula": "RTHST([CODE],[LABEL],[CURRENCY],[HISTORY],'116',[OTHER])",
"country": "USA",
"sector": "Materials",
"history": "EQUITYEUR68",
},
{
"code": "<EQUITYEUR70>",
"label": "Equity EUR n. 70",
"type": "EQT",
"currency": "EUR",
"alias1": "EQUITYEUR70",
"formula": "RTHST([CODE],[LABEL],[CURRENCY],[HISTORY],'116',[OTHER])",
"country": "USA",
"sector": "Information Technology",
"history": "EQUITYEUR70",
},
]
histories = [
{
"code": "EQUITYEUR68",
"label": "EQUITYEUR68",
"currency": "EUR",
"time_series": [
{"date": "2021-09-27", "value": 800.1},
{"date": "2021-09-28", "value": 802.1},
{"date": "2021-09-29", "value": 780.56},
],
},
{
"code": "EQUITYEUR70",
"label": "EQUITYEUR70",
"currency": "EUR",
"time_series": [
{"date": "2021-09-27", "value": 45.26},
{"date": "2021-09-28", "value": 48.22},
{"date": "2021-09-29", "value": 47.11},
],
},
]
context = Context(
date="2023-10-19",
horizon="1d",
local_db={"assets": assets, "histories": histories},
)
# Find top factors
top_factors, r2, trace = snapshot.top_factors(
context,
factors=factors_all,
max_size=10,
replication_method="enhanced_stepwise",
epsilon=0.01,
trace=True,
)
print("top_factors:", top_factors)
print("r2:", r2)
print("trace:", trace)
# add top factors asset and update context
assets.append(
{
"code": "#TOP_FACTORS",
"label": "top_factors",
"formula": f"RTLIST([CODE],[LABEL],'{';'.join(top_factors)}')",
},
)
context = Context(
date="2023-10-19",
horizon="1d",
local_db={"assets": assets, "histories": histories},
)
pivot_fields = ["sector", "ticker"]
fields = ["MAV", "\\\\div(STD,MAV)", "REG[T='#TOP_FACTORS']"]
pivot_view = snapshot.pivot_view(context, pivot_fields)
df_risks = pivot_view.get_risks(fields)
print("\nFull table:")
print(df_risks)
print("\nMultiregression beta:")
df_multiregression_beta = df_risks["REG[T='#TOP_FACTORS']"].apply(
lambda x: pd.Series(x)
)
df_multiregression_beta.columns = [*top_factors, "R^2", "regression constant"]
print(df_multiregression_beta)